cohomology
¶
Absolute and relative (simplicial) cohomology of surfaces.
EXAMPLES:
The absolute cohomology of the regular octagon:
sage: from flatsurf import translation_surfaces, SimplicialCohomology
sage: S = translation_surfaces.regular_octagon()
sage: H = SimplicialCohomology(S)
A basis of cohomology:
sage: H.gens()
[{B[(0, 1)]: 1}, {B[(0, 2)]: 1}, {B[(0, 3)]: 1}, {B[(0, 0)]: 1}]
The absolute cohomology of the unfolding of the (3, 4, 13) triangle:
sage: from flatsurf import Polygon, similarity_surfaces
sage: P = Polygon(angles=[3, 4, 13])
sage: S = similarity_surfaces.billiard(P).minimal_cover(cover_type="translation")
sage: H = SimplicialCohomology(S)
sage: len(H.gens())
16
The relative cohomology, relative to the vertices:
sage: S = S.erase_marked_points() # optional: pyflatsurf # random output due to deprecation warnings
sage: H = SimplicialCohomology(S, relative=S.vertices()) # optional: pyflatsurf
sage: len(H.gens()) # optional: pyflatsurf
17
- flatsurf.geometry.cohomology.SimplicialCohomology(surface, k=1, coefficients=None, relative=None, implementation='dual', category=None)[source]¶
Return the
k
-th simplicial cohomology group ofsurface
.INPUT:
surface
– a surfacek
– an integer (default:1
)coefficients
– a ring (default: the reals); consider cohomology with coefficients in this ringrelative
– a set (default: the empty set); if non-empty, then relative cohomology with respect to this set is constructed.implementation
– a string (default:"dual"
); the algorithm used to compute the cohomology groups. Currently only"dual"
is supported, i.e., the groups are computed as duals of the generic homology groups from SageMath.category
– a category; if not specified, a category for the cohomology group is chosen automatically depending oncoefficients
.
- class flatsurf.geometry.cohomology.SimplicialCohomologyClass(parent, values)[source]¶
A cohomology class.
INPUT:
parent
– the cohomology groupvalues
– a dict; the value at each generator ofSimplicialCohomologyGroup.homology()
.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialCohomology sage: S = translation_surfaces.regular_octagon() sage: H = SimplicialCohomology(S) sage: f, _, _, _ = H.gens() sage: from flatsurf.geometry.cohomology import SimplicialCohomologyClass sage: isinstance(f, SimplicialCohomologyClass) True
- class flatsurf.geometry.cohomology.SimplicialCohomologyGroup(surface, k, coefficients, relative, implementation, category)[source]¶
The
k
-th simplicial cohomology group of thesurface
withcoefficients
.INPUT:
surface
– a finite type surface without boundaryk
– an integercoefficients
– a ringrelative
– a subset of points of thesurface
implementation
– a string; the algorithm used to compute the cohomology, only"dual
is supported at the moment.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialCohomology sage: T = translation_surfaces.square_torus() sage: SimplicialCohomology(T) H¹(Translation Surface in H_1(0) built from a square)
- Element¶
alias of
SimplicialCohomologyClass
- gens()[source]¶
Return generators of this cohomology.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialCohomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialCohomology(T) sage: H.gens() [{B[(0, 1)]: 1}, {B[(0, 0)]: 1}]
- homology()[source]¶
Return the homology of the underlying space (with integer coefficients.)
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialCohomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialCohomology(T) sage: H.homology() H₁(Translation Surface in H_1(0) built from a square)